欢迎来到仪器仪表网,请记住我:yqybw.cn 【仪器仪表网】拼音首字母

AWRAMS 水面辐射自动云台测量系统

供应总量
0
zui小起订
0
品牌名称
TriOS
厂家区域
上海
发货期限:
自买家付款之日起 天内发货
好货推荐

三氧化硫 SO3监测仪

¥1000000.00/

LISA COD 光谱法COD在

¥100000.00/

快速重复荧光剖面系统

¥300000.00/

Mini-Waras 便携式宽

¥200000.00/

TriOS RPMS自由落体式

面议

液体生物气溶胶采样器

¥50000.00/

店铺信息

所在地区:上海

会员级别:企业免费会员1

身份认证:

已  缴 纳:0.00 元保证金

我的勋章: [诚信档案]

在线客服:

企业名片

上海奕枫仪器设备有限公司

手机店铺
}
【温馨提示】来电请说明在仪器仪表网看到我们的,谢谢
产品详情
型号:
AWRAMS
产地:
德国

产品介绍 特点及应用技术参数 文献资料 相关产品 相关文档


    水面高光谱辐射自动云台测量系统(AWRAMS,Above-Water Radiance Auto Measuring System)是一款水色遥感表观光学特性自动测量系统,将采集的表观光谱信息,记录在本地存储单元,并通过网络自动上传至预设的服务器。该仪器为精确的高光谱分析应用提供极大的方便,可在UV/VIS范围测量水面处向下太阳辐照度,海面辐亮度及天空辐亮度,并且服务器后台配套处理软件可以处理、计算得到离水辐亮度和遥感反射率等参数,形成数据产品。为水体生物光学模型提供关键参数,通过水色要素反演,可得到水体叶绿素、悬浮物质和有色溶解有机物CDOM浓度等。此外,还可用来估算浮游植物的丰度和初级生产力,检测赤潮、藻华,验证卫星水色观测数据等。

    水面高光谱辐射自动云台测量系统系统由1个辐照度传感器和2个辐亮度传感器组成。辐亮度传感器的观测角度可手动调整,此特殊角度设计可使上行水面辐亮度传感器与下行天空辐亮度传感器与水面的夹角相同,方便计算离水辐亮度与遥感反射率,用于遥感建模,可用于固定平台连续测量。

nsive center-block" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518033129147.jpg" width="600" height="451" border="0" hspace="0" vspace="0" title="" />

水面高光谱辐射自动云台测量系统


云台系统介绍

    云台系统为可按照预设策略,控制转台角度,采集辐射量并自动上传的传感器辅助测量系统,包括硬件平台和配套处理软件。可快速获取控制点经纬度,用于各类样区的定位、编辑和标绘。
1)基座和动力部分。
2)方位角转台:采用高精度闭环伺服控制,保证精度和分辨率。
基座及传感器转动部分:均采用316 L防腐不锈钢加工而成,在沿海、湖泊、河流等使用场合,均可做到防腐防锈。设备防护级别为IP67级别,可以耐受雨淋、风沙、日晒,环境工作温度范围为-10℃~50℃。
3)定位可选用GPS/北斗定位信号:保证精度范围在2 m,授时误差小于0.5 s。
4)4G无线网络模块:可使系统随时进行数据通讯,并可将监控视频或图像上传至云服务器。
5)系统由24 V直流供电:供电电压范围可以适应18~30 V,对各种蓄电池/风光互补发电系统具有良好的适应性。

nsive center-block" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518033150560.png" width="600" height="508" border="0" hspace="0" vspace="0" title="" />

 

 软件功能介绍

   配套处理软件可以得到光谱ES、LW、Rrs和nLW等参数产品。软件使用图形用户界面设计,界面简洁、友好,无需用户过多设置,导入数据和设备文件即可处理出需要的数据文件,并可进行图像浏览和保存。


特点及应用

特点
高分辨率辐照度和辐亮度测量
辐亮度传感器相对天顶角的测量角可调
带云台,可在方位角自控水平旋转,方位角可按预设与太阳方位角关联
太阳方位角根据GPS地理位置和授时自动计算
可无人值守运行,按预设程序自动定时测量
数据可通过网络自动上传至预设的服务器
本地可将数据存储于SD卡,以备网络通讯不畅时缓存数据
带有摄像头,可记录或上传被测位置水面和天空的现场情况
可带有后备电源系统,在断电后可连续运行48小时
传感器式设计,可连续采集光谱数据
低功耗,适合野外使用
应用范围广,适合各种野外环境,从赤道到两极都可使用
精度高,积分时间自适应,也可手动设置
zui新的纳米涂层技术,防污染


应用
离水辐亮度测量、遥感反射率测量
水色要素反演——叶绿素、蓝藻、CDOM、悬浮物质等
卫星数据验证——卫星数据的地面实证
海洋水色遥感研究、湖泊研究
藻类水华研究、海洋生产力估算
气候学——大气研究
极地生物研究、海岸带研究
遥感反演模型的建立,光学模型研究


技术参数

RAMSES传感器参数列表


ACC余弦辐照度ARC辐亮度ASC球形辐照度
UVUV/VISVISVISVIS
波长(nm)280~500280~720320~950320~950320~950
检测器256 通道硅光电检测器

光谱采样

[nm/pixel]

2.22.23.33.33.3
光谱精度0.20.20.30.30.3
实际通道100200190190190



ACC余弦辐照度ARC辐亮度ASC球形辐照度
UVVISVISVIS
波长(nm)280~500320~950320~950320~950
典型饱和度 (IT: 4 ms)
单位:Wm-2 nm-1
20 (300 nm)*
17 (360 nm)*
18 (500 nm)*
10 (400 nm)*
8 (500 nm)*
14 (700 nm)*

1Wm-2 nm-1 sr-1

 (500 nm)

20 (400 nm)*
12 (500 nm)*
15 (700 nm)*
典型NEI (IT: 8 s)
单位:μWm-2 nm-1
0.85 (300 nm)**
0.75 (360 nm)**
0.80 (500 nm)**
0.4 (400 nm)**
0.4 (500 nm)**
0.6 (700 nm)**
0.25 μWm-2 nm-1 sr-10.8(400 nm)**
0.6(500 nm)**
0.8(700 nm)**
收集器类型余弦检测器FOV:空气中7°球形检测2Pi
精度优于6~10%(取决于波长范围)优于6%优于5%
积分时间4 ms~8 s


传感器技术规格

测量原理辐照度或辐亮度
T100响应时间≤ 10 s (脉冲模式)测量角度40°±10°
数据存储-测量间隔≤ 8 s(脉冲模式)
外壳材质不锈钢(1.4571/1.4404)或钛合金(3.7035)
大小(L x Φ)ACC:260 mm x 48 mm
ASC:245 mm x 48 mm
ARC:300 mm x 48 mm
重量不锈钢:~ 0.9 kg 钛:~ 0.7 kg
数字接口RS-232 (TriOS)系统兼容性RS-232(TriOS协议)
电源8~12 VDC (± 3 %)功耗≤ 0.85 W
zui大压力SubConn:30 bar防水等级IP68
采样温度+2~+40 °C环境温度+2~+40 °C
保存温度-20~+80 °C流入速度0.1~10 m/s
校准/维护间隔24个月选配传感器倾角传感器:±45°
压力传感器:0~5 Bar、0~10 Bar、0~50 Bar可选

nsive center-block" alt="" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031134333.png" data-cke-saved-src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031134333.png" width="300" height="226" border="0" hspace="0" vspace="0" title="" />    nsive center-block" alt="" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031234896.png" data-cke-saved-src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031234896.png" width="300" height="226" border="0" hspace="0" vspace="0" title="" />

RAMSES-ACC-VIS                        RAMSES-ACC-UV

nsive center-block" alt="" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031430941.png" data-cke-saved-src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031430941.png" width="300" height="226" border="0" hspace="0" vspace="0" title="" />    nsive center-block" alt="" src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031458895.png" data-cke-saved-src="http://www2.yi-win.com/uploadfile/2018/0518/20180518031458895.png" width="300" height="226" border="0" hspace="0" vspace="0" title="" />
RAMSES-ASC-VIS                           RAMSES-ARC


文献资料

一、水质研究:叶绿素、蓝藻、TSM、CDOM反演监测
1.基于光谱匹配的内陆水体反演算法——《光谱学与光谱分析》2010
2.水体光谱测量与分析Ⅰ:水面以上测量法——《遥感学报》2004
3.水下光谱辐射测量技术——《海洋技术》2003
4.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
5.Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover——《Remote Sensing》2017


二、光学模型研究
1.秋季太湖水下光场结构及其对水生态系统的影响——《湖泊科学》2009
2.A model to predict spatial spectral and vertical changes in the average cosine of the underwater light fields: Implications for Remote sensing of shelf-seawaters——《Continental Shelf Research》2016
3.A practical model for sunlight disinfection of a subtropical maturation pond——《Water Research》2017
4.A spectral model for correcting sun glint and sky glint——《Conference paper: Ocean Optics》2016
5.Absorption correction and phase function shape effects on the closure of apparent optical properties——《Applied Optics》2016


三、卫星数据验证
1.Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes——《Remote Sensing》2017
2.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses——《Optics Express》2017
3.Response to Temperature of a Class of In Situ Hyperspectral Radiometers——《Journal of Atmospheric and Oceanic technology》2017
4.The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters——《Atmos. Meas. Tech.》2015
5.The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data——《Remote Sensing》2016


四、光合作用研究
1.Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity——《Journal of Marine Systems》2017
2.Chlorophyll a fluorescence lifetime reveals reversible UV?induced photosynthetic activity in the green algae Tetraselmis——《Eur Biophys J》2016
3.Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms——《Photosynth Res》2016
4.Primary production calculations for sea ice from bio-optical observations in the Baltic Sea——《Elementa: Science of the Anthropocene》2015
5.The Use of Rapid Light Curves to Assess Photosynthetic Performance of Different Ice- Algal Communities——《Norwegian University of Science and Technology》2017


五、光学参数测量
1.A novel method of measuring upwelling radiance in the hydrographic sub-hull——《J. Eur. Opt. Soc.》2016
2.Pelagic effects of offshore wind farm foundations in the stratified North Sea——《Progress in Oceanography》2017
3.Penetration of Visible Solar Radiation in Waters of the Barents Sea Depending on Cloudiness and Coccolithophore Blooms——《Oceanology》2017
4.Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012——《Cold Regions Science and Technology》2016
6.Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data——《Remote Sensing》2017


六、光胁迫研究
1.A (too) bright future? Arctic diatoms under radiation stress——《Polar Biol》2016
2.Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes——《Science of the Total Environment》2017
3.Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates——《Water Research》2016
4.Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs——《Aquacult Int》2016
5.Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages——《Aquacult Environ Interact》2017


七、水下光场研究
1.Effects of an Arctic under-ice bloom on solar radiant heating of the water column——《Journal of Geophysical Research: Oceans》2016
2.Influence of snow depth and surface flooding on light transmission through Antarctic pack ice——《Journal of Geophysical Research: Oceans》2016


八、藻类水华监测
1.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
2.Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea——《Remote Sensing》2016


注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途

售后服务承诺

免费上门安装:是

保修期:1年

是否可延长保修期:否

保内维修承诺:免费维修

报修承诺:8小时响应,24小时到达现场

免费仪器保养:一年一次

免费培训:2天3人次培训

现场技术咨询:有

"AWRAMS 水面辐射自动云台测量系统"相关资源
相关类目
气象站 风速仪(风量计) 照度计 噪声测量仪_声级计 空气负离子检测仪 环境振动仪 生态环境遥感(遥测系统) 环保治理设施_运行状态监视仪 大气多功能测量仪 多参数通风表 固体废弃物毒性浸出设备
相关商机
道路结冰监测器 JSSX-JBCG-1 地埋式结冰传感器 JSSX-JBCG-2 ZXAWS-GTX01 自组网探空仪 ZXCAWS600 云高仪 碳同位素分析系统 水同位素分析系统 厦门通创黑烟车电子抓拍系统HSVV1000 AZCW系列垂直起降固定翼无人机系统 EcoDrone UAS-8多功能无人机遥感系统 机动车排气遥感监测系统 OSCAR G2 高光谱光吸收计 TriOS RPMS自由落体式辐射剖面测量系统 AWRMMS 水面辐射移动测量系统 臭氧计(大气臭氧气柱总量测量) RedEdge-MX Dual双相机成像系统
企点客服www企点营销 企点客服www企点营销
免责声明

本网页所展示的有关【AWRAMS 水面辐射自动云台测量系统】的图片/价格/参数等所有数据信息由会员【上海奕枫仪器设备有限公司 】或网友提供,由仪器仪表网会员【上海奕枫仪器设备有限公司 】或网友自行对图片/价格/参数等所有数据信息的真实性、准确性和合法性负责,本平台(本网站)仅提供展示服务,请谨慎交易,因交易而产生的法律关系及法律纠纷由您自行协商解决,本平台(本网站)对此不承担任何责任。您在本网页可以浏览【AWRAMS 水面辐射自动云台测量系统】有关的信息/图片/价格等及提供 【AWRAMS 水面辐射自动云台测量系统】的商家公司简介、联系方式等信息。

在您的合法权益受到侵害时,请您在相关信息上架展示七日内,致电400-803-5117转6666,我们将竭诚为您服务。否则,本网站视为您主动放弃相关权益,我们对此不承担任何责任。感谢您的关注与支持!