欢迎来到仪器仪表网,请记住我:yqybw.cn 【仪器仪表网】拼音首字母

MC1000 8通道藻类培养与在线监测系统

价格 100000.00元/
供应总量
0
最小起订
0
品牌名称
捷克PSI
厂家区域
北京
发货期限:
自买家付款之日起 天内发货
好货推荐

VISIR动物行为观测分

¥100000.00/

LCpro T 全自动便携式

¥200000.00/

MC1000 8通道藻类培养

¥100000.00/

FMS便携式人体能量代

¥200000.00/

AquaPen-C手持式叶绿

¥30000.00/

EcoDrone UAS-8多功能

面议

店铺信息

所在地区:北京

会员级别:企业免费会员1

身份认证:

已  缴 纳:0.00 元保证金

我的勋章: [诚信档案]

在线客服:

企业名片

北京易科泰生态技术有限公司

手机店铺
}
【温馨提示】来电请说明在仪器仪表网看到我们的,谢谢
产品详情
型号:
MC1000
产地:
捷克

MC1000 8通道藻类培养与在线监测系统由8个100ml藻类培养试管、水浴控温系统、LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,其主要功能特点如下: 

1. 8通道藻类培养,每个藻类培养试管可培养85ml藻液

2. LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化等

3. 光密度在线监测,包括OD680、OD720,监测数据自动存储

4. 溶解氧在线监测(备选)以测量分析藻类光合作用等

5. 温度、光照控制可用户设置不同的程序模式

6. 气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀

7. 可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收

8. 可选配藻类荧光测量模块

应用领域:

l 多通道同步藻类培养

l 同步梯度胁迫实验

l 培养条件优化

l 控制培养条件与藻类生长动力学监测

仪器型号:

MC 1000-OD: 8个通道光源颜色相同,标配冷白光LED

MC 1000-OD-WW:8个通道光源颜色相同,标配暖白光LED

MC 1000-OD-MULTI: 8个通道光源颜色不同,分别为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

MC 1000-OD-MIX:每个通道可配备最多8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫光405nm,2)蓝紫光450nm,3)蓝光470nm或冷白光,4)暖白光,5)绿光540nm,6)黄橙光590nm,7)红光640nm,8)远红光730nm。

 

技术指标:

1. 藻类同步培养通道:8个

2. 培养管容量:100ml,建议最大培养容量85ml

3. 在线即时监测参数:分别监测每个培养管的OD680和OD720,数据自动保存到主机内存中,PIN光电二极管检测器,665-750nm带通滤波器

4. 精确控温范围:标准配置高于环境温度5-10℃(与光强有关)~60℃,可选配15℃-60℃(环境温度20℃,需加配制冷单元)

5. 加热系统:150W筒形加热器

6. 水浴体积:5L

7. 水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补水

8. 光源系统:全LED光源,可在0-100%范围内调控,每个通道的光强可分别独立调控

1) MC 1000-OD:标配冷白光LED,可选配暖白光、红光(635nm)或蓝光(470nm)LED;光强0-1000μmol/m2/s可调, 可升级至0-2500μmol/m2/s

2) MC 1000-OD-WW:标配暖白光LED,光强0-1000μmol/m2/s可调,更高光强可定制

3) MC 1000-OD-MULTI:8个通道光源颜色不同,分别为紫光405nm,蓝紫光450nm,蓝光470nm或冷白光,暖白光,绿光540nm,黄橙光590nm,红光640nm,远红光730nm;光强0-1000μmol/m2/s可调

4) MC 1000-OD-MIX:每个通道可配备最多8种不同颜色的LED光源,光源颜色可由用户定制,最大光强可达2500μmol/m2/s

 

9. 控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等

10. 控制单元显示屏:可调控培养程序和显示数据

11. 气流调控:通过多管调节阀对8个培养管手动独立调控气体流量

12. OD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出为TXT或Excel文件

13. MC实时在线监测分析模块(含专用工作站和软件基础版或高级版,选配)

1) 同时控制2台MC1000(基础版)或无限台MC1000(高级版)

2) 通过PBR软件动态调控光照和温度模式

3) 通过光密度(OD680、OD720)变化实时监测藻类生物量

4) 对生长速率进行实时回归分析

5) 多数据管理功能(过滤、查找、多重导出)

6) 可将测量数据、培养程序和其他信息保存到数据库中

7) 通过GUI图形用户界面设置培养程序并在线显示测量数据图

8) 数据可导出为CSV、Excel或XML文件

9) 支持GMS高精度气体混合系统(仅限高级版)

10) 用户自编程培养程序(仅限高级版)

11) 设定实验起始时间(仅限高级版)

12) 电子邮件通知(仅限高级版)

14. GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备

15. 恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控制

16. O2/CO2监测系统(选配):8通道续批式监测藻类CO2吸收或光合放氧通量:

1) 氧气分析测量:氧气测量范围0-100%,分辨率0.0001%,精确度优于0.1%,温度、压力补偿,数码过滤(噪音)0-50秒可调,具两行文字数字LCD背光显示屏,可同时显示氧气含量和气压

2) 二氧化碳分析测量:双波长非色散红外技术,测量范围0-5%或0-15%两级选择(双程),分辨率优于0.0001%或1ppm(可达0.1ppm),精确度1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显示CO2含量和气压,具数码过滤(噪音)功能

3) 气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功能

17. 藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类生理状态及浓度,荧光测量程序包括Ft,QY,OJIP-test,NPQ、光响应曲线等,可选配探头式测量或试管式测量:

1) 探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数

2) 试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度值

18. 通讯方式:USB

19. 尺寸:71×33×21 cm

20. 重量:13kg

21. 供电:110-240V

应用案例:

 

不同CO2浓度下衣藻Chlamydomonas的生长曲线(Zhang,2014)

 

聚球藻Synechococcus野生型和△nblA的生长曲线(Yu,2015)

 

产地:捷克

参考文献:

1. Yu J, et al. 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports 5:8132, DOI: 10.1038/srep08132

2. Grama B S, et al. 2015. Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.5b01544

3. Davis R W, et al. 2015. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresource Technology 198, 577-585

4. Patzelt D J, et al. 2015. Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures. Journal of Applied Phycology, 27(6), 2239-2250

5. Patzelt D J, et al. 2015. Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus. Algal Research 10, 164-171

6. Flowers J M, et al. 2015. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardti. The Plant Cell 27(9), 2353-2369

7. Makower A K, et al. 2015. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81(2), 544-554

8. Vu M T T, et al. 2015. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, doi:10.1007/s10811-015-0722-2

9. Nikolaou A, et al. 2015. A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. Journal of Biotechnology 194, 91-99. DOI: 10.1016/j.jbiotec.2014.12.00

10. Gris B, et al. 2015. Optimizing biomass and high value compound production in Cyanobacterium aponinum PCC 10605. Societa Botanica Italiana. Venezia.

11. Gérin S, et al. 2014. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Systems Biology 8, 96

12. Hasan R, et al. 2014. Bioremediation of Swine Wastewater and Biofuel Potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175

13. ?antr??ek J, et al. 2014. Stomatal and pavement cell density linked to leaf internal CO2 concentration. Annals of Botany 114, 191-202

14. Zhang B, et al. 2014. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization. BioResources 9(4), 6130-6140

15. Grama B S, et al. 2014. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresource Technology 151, 297-305

16. Grama B S, et al. 2014. Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69, 265-275

17. Miazek K, et al. 2014. Growth of Chlorella in the presence of organic carbon: A photobioreactor study. Conference – Process of Technics 2014 – Prague

注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途

"MC1000 8通道藻类培养与在线监测系统"相关资源
相关类目
水质分析仪_多参数水质分析仪 水中VOC监测仪 COD测定仪_COD快速测定仪 COD消解仪(消解器) BOD快速测定仪 TOC分析仪_总有机碳分析仪 高锰酸盐指数测定仪(CODMn) 叶绿素A_藻类分析仪 氰化物测定仪 溶解氧测定仪 离子检测仪 水质采样器 悬浮物测定仪 大肠杆菌测定仪 总氮测定仪 总氮分析仪 硫化物测定仪 挥发酚测定仪 污泥检测仪(界面计) 磷(硅)酸根检测仪 水质常规五参数监测仪 测油仪(红外测油仪_荧光测油仪) 余氯测定仪_二氧化氯测定仪 氨氮测定仪(分析仪) 水质重金属检测仪(监测仪) 水质(生物)毒性分析仪 水质在线自动监测系统 总磷总氮测定仪 藻类计数仪(浮游动植物计数框) 水质卤素分析仪
相关商机
水中蓝绿藻分析仪 水中叶绿素a/蓝绿藻二合一分析仪 天尔仪器 便携式叶绿素A测定仪TE-1020 天尔便携式叶绿素A测定仪 TE-1020 天尔仪器 TE-1020叶绿素A水质检测仪 天尔仪器 TE-1020便携式叶绿素A检测 天尔TE-1020手持便携式叶绿素A检测仪 手持式叶绿素测定仪 实验室藻类分析仪 便携式底栖藻分析仪 便携式藻类分析仪 在线叶绿素a分析仪 ALGcontrol在线藻类分析仪 荷兰microLAN 野外藻类分析仪 在线藻类分析仪
企点客服www企点营销 企点客服www企点营销
免责声明

本网页所展示的有关【MC1000 8通道藻类培养与在线监测系统】的图片/价格/参数等所有数据信息由会员【北京易科泰生态技术有限公司 】或网友提供,由仪器仪表网会员【北京易科泰生态技术有限公司 】或网友自行对图片/价格/参数等所有数据信息的真实性、准确性和合法性负责,本平台(本网站)仅提供展示服务,请谨慎交易,因交易而产生的法律关系及法律纠纷由您自行协商解决,本平台(本网站)对此不承担任何责任。您在本网页可以浏览【MC1000 8通道藻类培养与在线监测系统】有关的信息/图片/价格等及提供 【MC1000 8通道藻类培养与在线监测系统】的商家公司简介、联系方式等信息。

在您的合法权益受到侵害时,请您在相关信息上架展示七日内,致电400-803-5117转6666,我们将竭诚为您服务。否则,本网站视为您主动放弃相关权益,我们对此不承担任何责任。感谢您的关注与支持!